21 research outputs found

    Involvement of glutaredoxin-1 and thioredoxin-1 in -amyloid toxicity and Alzheimer's disease

    Get PDF
    25 páginas, 10 figuras.Strong evidence indicates oxidative stress in the pathogenesis of Alzheimer's disease (AD). Amyloid (A) has been implicated in both oxidative stress mechanisms and in neuronal apoptosis. Glutaredoxin-1 (GRX1) and thioredoxin-1 (TRX1) are antioxidants that can inhibit apoptosis signal-regulating kinase (ASK1). We examined levels of GRX1 and TRX1 in AD brain as well as their effects on A neurotoxicity. We show an increase in GRX1 and a decrease in neuronal TRX1 in AD brains. Using SH-SY5Y cells, we demonstrate that A causes an oxidation of both GRX1 and TRX1, and nuclear export of Daxx, a protein downstream of ASK1. Atoxicity was inhibited by insulin-like growth factor-I (IGF-I) and by overexpressing GRX1 or TRX1. Thus, A neurotoxicity might be mediated by oxidation of GRX1 or TRX1 and subsequent activation of the ASK1 cascade. Deregulation of GRX1 and TRX1 antioxidant systems could be important events in AD pathogenesis.This research was supported by grants from the following Swedish foundations: Hjärnfonden (Swedish Brain Foundation), Gun och Bertil Stohnes Stiftelse, Karolinska Institutets Foundation for geriatric research, Loo and Hans Ostermans Foundation, Åke Wiberg Foundation, Svenska Lundbeck-stiftelsen, Demensförbundet, Alzheimer Foundation; Sweden, Lars Hiertas minnesstiftelse, Gamla Tjänarinnor foundation, Insamlingsstiftelsen för Alzheimer och demenforskning (SADF) and Swedish Brain Power project. AM-V was supported by Swedish Medical Research Council (Projects 03P-14096, 03X-14041, and 13X-10370). AJ was supported by a postdoctoral fellowship EX2003-0390 from the Spanish Ministerio de Educacion, Cultura y Deporte.Peer reviewe

    OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67)

    Get PDF
    Background: Early-onset hearing loss is mostly of genetic origin. The complexity of the hearing process is reflected by its extensive genetic heterogeneity, with probably many causative genes remaining to be identified. Here, we aimed at identifying the genetic basis for autosomal dominant non-syndromic hearing loss (ADNSHL) in a large German family. Methods: A panel of 66 known deafness genes was analyzed for mutations by next-generation sequencing (NGS) in the index patient. We then conducted genome-wide linkage analysis, and whole-exome sequencing was carried out with samples of two patients. Expression of Osbpl2 in the mouse cochlea was determined by immunohistochemistry. Because Osbpl2 has been proposed as a target of miR-96, we investigated homozygous Mir96 mutant mice for its upregulation. Results: Onset of hearing loss in the investigated ADNSHL family is in childhood, initially affecting the high frequencies and progressing to profound deafness in adulthood. However, there is considerable intrafamilial variability. We mapped a novel ADNSHL locus, DFNA67, to chromosome 20q13.2-q13.33, and subsequently identified a co-segregating heterozygous frameshift mutation, c.141-142delTG (p.Arg50Alafs∗103), in OSBPL2, encoding a protein known to interact with the DFNA1 protein, DIAPH1. In mice, Osbpl2 was prominently expressed in stereocilia of cochlear outer and inner hair cells. We found no significant Osbpl2 upregulation at the mRNA level in homozygous Mir96 mutant mice. Conclusion: The function of OSBPL2 in the hearing process remains to be determined. Our study and the recent description of another frameshift mutation in a Chinese ADNSHL family identify OSBPL2 as a novel gene for progressive deafness.</p

    Diagnostic applications of next generation sequencing: working towards quality standards

    Get PDF
    Over the past 6 years, next generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. All major NGS technology companies providing commercially available instruments (Roche 454, Illumina, Life Technologies) have recently marketed bench top sequencing instruments with lower throughput and shorter run times, thereby broadening the applications of NGS and opening the technology to the potential use for clinical diagnostics. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry and data analysis need to be overcome. To facilitate the implementation of NGS as a routine method in molecular diagnostics, consistent quality standards need to be developed. Here the authors give an overview of the current standards in protocols and workflows and discuss possible approaches to define quality criteria for NGS in molecular genetic diagnostics

    Identification of novel mutations in X-linked retinitis pigmentosa families and implications for diagnostic testing

    Get PDF
    Contains fulltext : 69886.pdf (publisher's version ) (Open Access)PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families

    Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

    Get PDF
    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function

    Identification of a PRPF4 Loss-of-Function Variant That Abrogates U4/U6.U5 Tri-snRNP Integration and Is Associated with Retinitis Pigmentosa

    Get PDF
    Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina
    corecore